DataAnalysis
1ヵ月間「Kaggle Masterによるデータ分析技術者養成講座」なるセミナーを受講していました。DeNAでデータサイエンティストとして働く@yukrai17さんが、Pythonを使った機械学習のモデル作りについて教えてくれる講座で、データの作り方やモデルの検証方法まで…
Twitterで見つけた可視化にインスピレーションを受けて、プレミアリーグの選手別出場時間をヒートマップで可視化してみました。グラフィカルにすることで直感的に感じれる部分も多々あるので、そこを中心に見ていきます。
今回はPythonではなくWatsonです。IBMのAIであるWatsonの機能を利用して、自動で予測モデルを作成してみたいと思います。まずは以前使用したリヴァプールの前半戦スタッツを使ってみますが、データ量が少ないので精度は出ないと思われます。まずはやってみる…
先日ふといわきFCのサイトに訪れたところ、選手情報が最新の情報へ更新されていたので、改めてBMI値を見てみたいと思います。ちなみに2018年末時点でのBMIはこんな感じでした。 96lovefootball.hatenablog.com
以前の振り返りに引き続き今回はパス周りのスタッツを見ていきます。後半戦を観ていくためにも、リヴァプールのスタッツがどんな値なのか感覚を掴みたいと思います。 96lovefootball.hatenablog.com
残念ながら私が応援しているリヴァプールは今節リーグ初黒星を喫しました。やはりシティは強いなぁ、後半戦の優勝争いが激化しそうだなぁ、などと思いつつも、まだ首位はリヴァプールなのでここから切り替えて欲しい次第です。さて今回は、こんなタイミング…
前回JリーグといわきFCの選手情報をそれぞれ集めてBMIを算出して比べてみました。折角なので今回も同じデータを使って、もう少し細かく見てみようと思います。主にはポジション別に見てどんな傾向があるのかを見ていきます。
2017年の天皇杯で、コンサドーレ札幌を延長戦の上に下した試合が大きな話題を呼んだいわきFC。「日本のフィジカルスタンダードを変える」ことをビジョンの一つに掲げるクラブの選手たちのフィジカルが、現在のJリーグ選手たちと比べてどのようなポジションに…
引き続き、データ遊びをしていきます。最近、大学時代にかじっていた統計学を改めて勉強し直しています。数式のオンパレードで途中血へどを吐きそうになりましたが、なんとかインプットした内容をアウトプットしていきます。まずは、今回から数回に渡りPytho…
前回に引き続き「Pythonで理解する統計解析の基礎」を参考にして、Pythonを使ったデータ分析の手法を学んでいきます。今回はプレミアリーグ所属選手の身長と年齢を可視化して、より分かりやすく理解出来るようにしてみます。
前回は「Google Colab」でのファイルの読み込みを試しました。今回は一歩進んでPythonでのデータ準備作業と簡単な計算に挑戦してみます。前回同様worldfootball.netから取得したデータを使って、プレミアリーグに所属する選手の平均身長および平均年齢を求め…